
NEUROSCIENCE IN THENEUROSCIENCE IN THE

DATABASEDATABASE

MAPPING THE MORPHOLOGYMAPPING THE MORPHOLOGY

OF NEURONS AND
OF NEURONS AND
SYNAPSESSYNAPSES

WITH CATMAID AND POSTGISWITH CATMAID AND POSTGIS
Tom Kazimiers | kazmos GmbH

PostGIS Day 2021, November 18

1

WHO?WHO?

Tom Kazimiers, Main developer of

CATMAID, MSc CS (Dipl.Inf.) TU Dresden

3+ years at MPI CBG (Dresden, DE)

6+ years at HHMI Janelia Research

Campus (Ashburn, Virginia, USA)

Since 2020: Open Source Research

Software Engineer and founder of

consultancy kazmos GmbH (DE)

2

TOPICSTOPICS

Motivation and data

 Overview

Data representation

Neuron graph queries

PostGIS queries

3

MOTIVATION: CONNECTOMICSMOTIVATION: CONNECTOMICS

Structure/development of central nervous system

Function of specific neurons and neuron classes

Synapses and resulting networks

How is behavior controlled?

Fundamental research

Model organism Drosophila Melanogaster ("fruit
fly")
Images: Wikimedia, CC-BY-SA 2.5 (left) and CC-BY-SA 4.0 (right)

4

~7 meters of neurons in brain of fruit fly, 20 labs, 186
users
created and reviewed 33 million nodes in more than 60 person years

Image by Philipp Schlegel, Jefferis lab

5

IMAGE DATA: ELECTRON MICROSCOPYIMAGE DATA: ELECTRON MICROSCOPY

ssTEM: Elastic volume reconstruction from series of ultra-thin
microscopy sections
S. Saalfeld, R. Fetter, A. Cardona, et al., Nature Methods, 2012

6

REPRESENTATIVE DATA SETSREPRESENTATIVE DATA SETS

Drosophila Larva L1 Dataset (ssTEM):

28,128 x 31,840 x 4,841 px @ 3.8 x 3.8 x 50 nm/px

0.9TB as JPEG tiles (512 x 512)

Drosophila FAFB Dataset (ssTEM):

253,952 x 155,648 x 7,063 px @ 4 x 4 x 40 nm/px

10.9TB as JPEG tiles (1024 x 1024)

Drosophila Hemibrain Dataset (FIBSEM):

40,959 x 34,815 x 43,007 px @ 8 x 8 x 8 nm/px

5.3TB as Neuroglancer Precomputed (64 x 64 x 64)

Compare: OpenStreetMap tiles (z18):

Scandinavian countries: 1TB (Geofabrik)

North + South America: 11TB (Geofabrik)

North America: 5.4TB (Geofabrik)

7

CATMAIDCATMAID

Collaborative
Annotation
Toolkit

for

Massive
Amounts of
Image
Data

8

USER INTERFACE IUSER INTERFACE I

Typical CATMAID workspace with 2D and 3D views plus some connectivity tools
Example circuit from Dolan et al. 2019, FAFBv14 dataset

9

USER INTERFACE IIUSER INTERFACE II

CATMAID with neuron similarity tools and point-clouds from light data
Screenshots from Albert Cardona's Drosophila L1 dataset

10

NEURON SEGMENTATIONNEURON SEGMENTATION

Segmentation of FAFB dataset: used also for skeletonization;
Similar in FlyWire project
Li, Jain et al, bioRxiv 2020

11

SYNAPTIC PARTNER DETECTIONSYNAPTIC PARTNER DETECTION

Automatic detection of synaptic partners (CircuitMap tool in
CATMAID)
Buhman et al, Nature Methods, 2021

12

MODELLING NEURONSMODELLING NEURONS

First order (downstream) partners (orange/red) to MBON a2sc Left ASB (green)
From Dolan and Belliart-Guérin et al. 2018

13

MODELLING NEURONSMODELLING NEURONS

MBON and PD neurons with synapses highlighted (pre: red, post: cyan)
From Dolan and Belliart-Guérin et al. 2018

14

MORPHOLOGY OF A NEURONMORPHOLOGY OF A NEURON

15

TOPOLOGY OF A NEURONTOPOLOGY OF A NEURON

16

REPRESENTING NEURONS IN A DATABASEREPRESENTING NEURONS IN A DATABASE

Relational data, explicit schema: PostgreSQL

Nodes of all skeletons in single table

Every element knows parent or is root (trees)

\d treenode

 Column | Type | Nullable | Default

 ---------------+-----------------+----------+--------

 id | bigint | not null |

 parent_id | bigint | |

 skeleton_id | bigint | not null |

 project_id | integer | not null |

 location_x | real | not null |

 … | … | … |

 Foreign-key constraints:

 "treenode_parent_id_fkey" FOREIGN KEY (parent_id)

 REFERENCES treenode(id)

17

QUERY NODES OF A SKELETONQUERY NODES OF A SKELETON

Query ignores any structure/relation between nodes

Root node of skeleton

SELECT id, parent_id, location_x, location_y, location_z
FROM treenode
WHERE skeleton_id = {skeleton_id}

1
2
3

SELECT id, parent_id, location_x, location_y, location_z
FROM treenode
WHERE skeleton_id = {skeleton_id} AND parent_id IS NULL

1
2
3

18

QUERY NEIGHBOR NODESQUERY NEIGHBOR NODES

SELECT c.id, c.location_x, c.location_y, c.location_z
FROM treenode c
WHERE parent_id = {node_id}

UNION ALL

SELECT p.id, p.location_x, p.location_y, p.location_z
FROM treenode t
JOIN treenode p
 ON p.id = t.parent_id
WHERE t.id = {node_id}

1
2
3
4
5
6
7
8
9
10
11

19

TRAVERSE SKELETONSTRAVERSE SKELETONS

Walk treenode DAG from root to leaves breadth-first,

e.g. to
find nodes not connected to root

WITH RECURSIVE nodes (id, depth) AS (
 SELECT t.id, 1
 FROM treenode t
 WHERE t.parent_id IS NULL
 AND t.skeleton_id = {skeleton_id}
 UNION ALL
 SELECT t.id, p.depth + 1
 FROM treenode t
 JOIN nodes p ON t.parent_id = p.id
)
SELECT t.id, t.parent_id
FROM treenode t
WHERE t.skeleton_id = {skeleton_id}
 AND NOT EXISTS (SELECT n.id FROM nodes n WHERE n.id = t.id);

1
2
3
4
5
6
7
8
9
10
11
12
13
14

20 . 1

TRAVERSE SKELETONSTRAVERSE SKELETONS

Walk treenode DAG from root to leaves breadth-first,

e.g. to
find nodes not connected to root

WITH RECURSIVE nodes (id, depth) AS (
 SELECT t.id, 1
 FROM treenode t
 WHERE t.parent_id IS NULL
 AND t.skeleton_id = {skeleton_id}
 UNION ALL
 SELECT t.id, p.depth + 1
 FROM treenode t
 JOIN nodes p ON t.parent_id = p.id
)

1
2
3
4
5
6
7
8
9
10

SELECT t.id, t.parent_id11
FROM treenode t12
WHERE t.skeleton_id = {skeleton_id}13
 AND NOT EXISTS (SELECT n.id FROM nodes n WHERE n.id = t.id);14

20 . 2

TRAVERSE SKELETONSTRAVERSE SKELETONS

Walk treenode DAG from root to leaves breadth-first,

e.g. to
find nodes not connected to root

 SELECT t.id, 1
 FROM treenode t
 WHERE t.parent_id IS NULL
 AND t.skeleton_id = {skeleton_id}

WITH RECURSIVE nodes (id, depth) AS (1
2
3
4
5

 UNION ALL6
 SELECT t.id, p.depth + 17
 FROM treenode t8
 JOIN nodes p ON t.parent_id = p.id9
)10
SELECT t.id, t.parent_id11
FROM treenode t12
WHERE t.skeleton_id = {skeleton_id}13
 AND NOT EXISTS (SELECT n.id FROM nodes n WHERE n.id = t.id);14

20 . 3

TRAVERSE SKELETONSTRAVERSE SKELETONS

Walk treenode DAG from root to leaves breadth-first,

e.g. to
find nodes not connected to root

 SELECT t.id, p.depth + 1
 FROM treenode t
 JOIN nodes p ON t.parent_id = p.id

WITH RECURSIVE nodes (id, depth) AS (1
 SELECT t.id, 12
 FROM treenode t3
 WHERE t.parent_id IS NULL4
 AND t.skeleton_id = {skeleton_id}5
 UNION ALL6

7
8
9

)10
SELECT t.id, t.parent_id11
FROM treenode t12
WHERE t.skeleton_id = {skeleton_id}13
 AND NOT EXISTS (SELECT n.id FROM nodes n WHERE n.id = t.id);14

20 . 4

TRAVERSE SKELETONSTRAVERSE SKELETONS

Walk treenode DAG from root to leaves breadth-first,

e.g. to
find nodes not connected to root

SELECT t.id, t.parent_id
FROM treenode t
WHERE t.skeleton_id = {skeleton_id}
 AND NOT EXISTS (SELECT n.id FROM nodes n WHERE n.id = t.id);

WITH RECURSIVE nodes (id, depth) AS (1
 SELECT t.id, 12
 FROM treenode t3
 WHERE t.parent_id IS NULL4
 AND t.skeleton_id = {skeleton_id}5
 UNION ALL6
 SELECT t.id, p.depth + 17
 FROM treenode t8
 JOIN nodes p ON t.parent_id = p.id9
)10

11
12
13
14

20 . 5

CONNECTED NEURONSCONNECTED NEURONS

21

NEURON GRAPHS IN CATMAIDNEURON GRAPHS IN CATMAID

Skeleton A Skeletons B and C

pre: presynaptic to

post

post

Connector

post: postsynaptic to

pre

treenode

22

NEURON GRAPHS IN SQLNEURON GRAPHS IN SQL

\d treenode_connector

 Column | Type | Nullable | Default

 ---------------+-----------------+----------+--------

 relation_id | bigint | not null |

 treenode_id | bigint | not null |

 connector_id | bigint | not null |

 skeleton_id | bigint | not null |

 project_id | integer | not null |

 confidence | smallint | not null | 5

 … | … | … |

 Foreign-key constraints:

 …

23

FINDING PARTNER NEURONSFINDING PARTNER NEURONS

Useful for direct connections between skeletons, e.g.

find
partner skeleton IDs and synapse counts

Gets more complex with additional levels

SELECT tc2.skeleton_id AS partner, COUNT(*) AS n_post_sites
FROM treenode_conector tc1
JOIN treenode_conector tc2
 ON tc1.connector_id = tc2.connector_id
 AND tc1.treenode_id != tc2.treenode_id
WHERE tc1.relation_id = {presynaptic_to_id}
 AND tc2.relation_id = {postsynaptic_to_id}
 AND tc1.project_id = {project_id}
 AND tc2.project_id = {project_id}
 AND tc1.skeleton_id = {skeleton_id}
GROUP BY tc2.skeleton_id

1
2
3
4
5
6
7
8
9
10
11

24 . 1

FINDING PARTNER NEURONSFINDING PARTNER NEURONS

Useful for direct connections between skeletons, e.g.

find
partner skeleton IDs and synapse counts

Gets more complex with additional levels

FROM treenode_conector tc1

WHERE tc1.relation_id = {presynaptic_to_id}

 AND tc1.project_id = {project_id}

 AND tc1.skeleton_id = {skeleton_id}

SELECT tc2.skeleton_id AS partner, COUNT(*) AS n_post_sites1
2

JOIN treenode_conector tc23
 ON tc1.connector_id = tc2.connector_id4
 AND tc1.treenode_id != tc2.treenode_id5

6
 AND tc2.relation_id = {postsynaptic_to_id}7

8
 AND tc2.project_id = {project_id}9

10
GROUP BY tc2.skeleton_id11

24 . 2

FINDING PARTNER NEURONSFINDING PARTNER NEURONS

Useful for direct connections between skeletons, e.g.

find
partner skeleton IDs and synapse counts

Gets more complex with additional levels

JOIN treenode_conector tc2

 AND tc2.relation_id = {postsynaptic_to_id}

 AND tc2.project_id = {project_id}

SELECT tc2.skeleton_id AS partner, COUNT(*) AS n_post_sites1
FROM treenode_conector tc12

3
 ON tc1.connector_id = tc2.connector_id4
 AND tc1.treenode_id != tc2.treenode_id5
WHERE tc1.relation_id = {presynaptic_to_id}6

7
 AND tc1.project_id = {project_id}8

9
 AND tc1.skeleton_id = {skeleton_id}10
GROUP BY tc2.skeleton_id11

24 . 3

FINDING PARTNER NEURONSFINDING PARTNER NEURONS

Useful for direct connections between skeletons, e.g.

find
partner skeleton IDs and synapse counts

Gets more complex with additional levels

FROM treenode_conector tc1
JOIN treenode_conector tc2
 ON tc1.connector_id = tc2.connector_id
 AND tc1.treenode_id != tc2.treenode_id

SELECT tc2.skeleton_id AS partner, COUNT(*) AS n_post_sites1
2
3
4
5

WHERE tc1.relation_id = {presynaptic_to_id}6
 AND tc2.relation_id = {postsynaptic_to_id}7
 AND tc1.project_id = {project_id}8
 AND tc2.project_id = {project_id}9
 AND tc1.skeleton_id = {skeleton_id}10
GROUP BY tc2.skeleton_id11

24 . 4

FINDING PARTNER NEURONSFINDING PARTNER NEURONS

Useful for direct connections between skeletons, e.g.

find
partner skeleton IDs and synapse counts

Gets more complex with additional levels

SELECT tc2.skeleton_id AS partner, COUNT(*) AS n_post_sites

GROUP BY tc2.skeleton_id

1
FROM treenode_conector tc12
JOIN treenode_conector tc23
 ON tc1.connector_id = tc2.connector_id4
 AND tc1.treenode_id != tc2.treenode_id5
WHERE tc1.relation_id = {presynaptic_to_id}6
 AND tc2.relation_id = {postsynaptic_to_id}7
 AND tc1.project_id = {project_id}8
 AND tc2.project_id = {project_id}9
 AND tc1.skeleton_id = {skeleton_id}10

11

24 . 5

POSTGIS DATAPOSTGIS DATA

In 2D view: intersections of skeletons with 2D
plane and

store edges between nodes

Main planar access in a single direction (usually Z)

\d treenode_edge

 Column | Type | Collation | Nullable | Default

 ------------+-----------------------+-----------+----------+---------

 id | bigint | | not null |

 parent_id | bigint | | |

 project_id | integer | | not null |

 edge | geometry(LineStringZ) | | not null |

 Indexes:

 "treenode_edge_pkey" PRIMARY KEY, btree (id)

 "treenode_edge_project_id_index" btree (project_id)

 "treenode_edge_2d_gist" gist (edge)

 "treenode_edge_3d_gist" gist (edge gist_geometry_ops_nd)

 "treenode_edge_z_range_gist" gist (floatrange(

 st_zmin(edge::box3d), st_zmax(edge::box3d), '[]'::text))

25

BOUNDING BOX QUERIESBOUNDING BOX QUERIES

2D view: cross section of all neurons in a field of view at

a
particular depth

Different FoV BBs can benefit from different indexes, so

CATMAID tries to use fitting query, e.g.:

Whole slice is visible

Medium-sized rectangle

Small FoV with BB closer to a cube

For analysis/filters: intersect with 3D meshes (e.g.

compartments)

26

LARGE FIELD OF VIEWLARGE FIELD OF VIEW

Get all child and parent nodes of edges in a 3D bounding box

SELECT *
FROM (
 SELECT DISTINCT ON (id) UNNEST(ARRAY[te.id, te.parent_id]) AS id
 FROM treenode_edge te
 WHERE te.project_id = {project_id}
 AND floatrange(ST_ZMin(te.edge), ST_ZMax(te.edge), '[]')
 && floatrange({z1}, {z2}, '[)')
 AND te.edge && ST_MakeEnvelope({left}, {top}, {right}, {bottom})
 AND ST_3DDWithin(te.edge, ST_MakePolygon(ST_MakeLine(ARRAY[
 ST_MakePoint({left}, {top}, {halfz}),
 ST_MakePoint({right}, {top}, {halfz}),
 ST_MakePoint({right}, {bottom}, {halfz}),
 ST_MakePoint({left}, {bottom}, {halfz}),
 ST_MakePoint({left}, {top}, {halfz})]::geometry[])),
 {halfzdiff})
) bb_treenode
JOIN treenode t1
 ON t1.id = bb_treenode.id

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

27 . 1

LARGE FIELD OF VIEWLARGE FIELD OF VIEW

Constrain result edges to those in a user-defined Z range and allow use of index
"treenode_edge_z_range_gist" gist (floatrange(

ST_ZMin(edge::box3d), ST_ZMax(edge::box3d), '[]'::text))

 AND floatrange(ST_ZMin(te.edge), ST_ZMax(te.edge), '[]')
 && floatrange({z1}, {z2}, '[)')

SELECT *1
FROM (2
 SELECT DISTINCT ON (id) UNNEST(ARRAY[te.id, te.parent_id]) AS id3
 FROM treenode_edge te4
 WHERE te.project_id = {project_id}5

6
7

 AND te.edge && ST_MakeEnvelope({left}, {top}, {right}, {bottom})8
 AND ST_3DDWithin(te.edge, ST_MakePolygon(ST_MakeLine(ARRAY[9
 ST_MakePoint({left}, {top}, {halfz}),10
 ST_MakePoint({right}, {top}, {halfz}),11
 ST_MakePoint({right}, {bottom}, {halfz}),12
 ST_MakePoint({left}, {bottom}, {halfz}),13
 ST_MakePoint({left}, {top}, {halfz})]::geometry[])),14
 {halfzdiff})15
) bb_treenode16
JOIN treenode t117
 ON t1.id = bb_treenode.id18

27 . 2

LARGE FIELD OF VIEWLARGE FIELD OF VIEW

Constrain result edges to only those in XY user-defined XY area and allow use of index
"treenode_edge_2d_gist" gist (edge);

 AND te.edge && ST_MakeEnvelope({left}, {top}, {right}, {bottom})

SELECT *1
FROM (2
 SELECT DISTINCT ON (id) UNNEST(ARRAY[te.id, te.parent_id]) AS id3
 FROM treenode_edge te4
 WHERE te.project_id = {project_id}5
 AND floatrange(ST_ZMin(te.edge), ST_ZMax(te.edge), '[]')6
 && floatrange({z1}, {z2}, '[)')7

8
 AND ST_3DDWithin(te.edge, ST_MakePolygon(ST_MakeLine(ARRAY[9
 ST_MakePoint({left}, {top}, {halfz}),10
 ST_MakePoint({right}, {top}, {halfz}),11
 ST_MakePoint({right}, {bottom}, {halfz}),12
 ST_MakePoint({left}, {bottom}, {halfz}),13
 ST_MakePoint({left}, {top}, {halfz})]::geometry[])),14
 {halfzdiff})15
) bb_treenode16
JOIN treenode t117
 ON t1.id = bb_treenode.id18

27 . 3

LARGE FIELD OF VIEWLARGE FIELD OF VIEW

Test true distance of edge to BB to remove matches where only the BB of the edge is close,
Lowers false positives where only query BB and edge BB intersect

 AND ST_3DDWithin(te.edge, ST_MakePolygon(ST_MakeLine(ARRAY[
 ST_MakePoint({left}, {top}, {halfz}),
 ST_MakePoint({right}, {top}, {halfz}),
 ST_MakePoint({right}, {bottom}, {halfz}),
 ST_MakePoint({left}, {bottom}, {halfz}),
 ST_MakePoint({left}, {top}, {halfz})]::geometry[])),
 {halfzdiff})

SELECT *1
FROM (2
 SELECT DISTINCT ON (id) UNNEST(ARRAY[te.id, te.parent_id]) AS id3
 FROM treenode_edge te4
 WHERE te.project_id = {project_id}5
 AND floatrange(ST_ZMin(te.edge), ST_ZMax(te.edge), '[]')6
 && floatrange({z1}, {z2}, '[)')7
 AND te.edge && ST_MakeEnvelope({left}, {top}, {right}, {bottom})8

9
10
11
12
13
14
15

) bb_treenode16
JOIN treenode t117
 ON t1.id = bb_treenode.id18

27 . 4

SMALL FOV / CUBE-LIKE BBSMALL FOV / CUBE-LIKE BB

Similar structure like other query, but different index
Small result set, no extra filter conditions are beneficial

SELECT *
FROM (
 SELECT DISTINCT ON (id) UNNEST(ARRAY[te.id, te.parent_id]) AS id
 FROM treenode_edge te
 WHERE te.project_id = {project_id}
 AND te.edge &&& ST_MakeLine(ARRAY[
 ST_MakePoint({left}, {bottom}, {z2}),
 ST_MakePoint({right}, {top}, {z1})] ::geometry[])
 AND ST_3DDWithin(te.edge, ST_MakePolygon(ST_MakeLine(ARRAY[
 ST_MakePoint({left}, {top}, {halfz}),
 ST_MakePoint({right}, {top}, {halfz}),
 ST_MakePoint({right}, {bottom}, {halfz}),
 ST_MakePoint({left}, {bottom}, {halfz}),
 ST_MakePoint({left}, {top}, {halfz})]::geometry[])),
 {halfzdiff})
) bb_treenode
JOIN treenode t1
 ON t1.id = bb_treenode.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

28 . 1

SMALL FOV / CUBE-LIKE BBSMALL FOV / CUBE-LIKE BB

The &&& operator allows the planner to use the index
"treenode_edge_3d_gist" gist (edge gist_geometry_ops_nd)

 AND te.edge &&& ST_MakeLine(ARRAY[
 ST_MakePoint({left}, {bottom}, {z2}),
 ST_MakePoint({right}, {top}, {z1})] ::geometry[])

SELECT *1
FROM (2
 SELECT DISTINCT ON (id) UNNEST(ARRAY[te.id, te.parent_id]) AS id3
 FROM treenode_edge te4
 WHERE te.project_id = {project_id}5

6
7
8

 AND ST_3DDWithin(te.edge, ST_MakePolygon(ST_MakeLine(ARRAY[9
 ST_MakePoint({left}, {top}, {halfz}),10
 ST_MakePoint({right}, {top}, {halfz}),11
 ST_MakePoint({right}, {bottom}, {halfz}),12
 ST_MakePoint({left}, {bottom}, {halfz}),13
 ST_MakePoint({left}, {top}, {halfz})]::geometry[])),14
 {halfzdiff})15
) bb_treenode16
JOIN treenode t117
 ON t1.id = bb_treenode.18

28 . 2

SMALL FOV / CUBE-LIKE BBSMALL FOV / CUBE-LIKE BB

Limit the number of false positive BB-only intersections, just like before

 AND ST_3DDWithin(te.edge, ST_MakePolygon(ST_MakeLine(ARRAY[
 ST_MakePoint({left}, {top}, {halfz}),
 ST_MakePoint({right}, {top}, {halfz}),
 ST_MakePoint({right}, {bottom}, {halfz}),
 ST_MakePoint({left}, {bottom}, {halfz}),
 ST_MakePoint({left}, {top}, {halfz})]::geometry[])),
 {halfzdiff})

SELECT *1
FROM (2
 SELECT DISTINCT ON (id) UNNEST(ARRAY[te.id, te.parent_id]) AS id3
 FROM treenode_edge te4
 WHERE te.project_id = {project_id}5
 AND te.edge &&& ST_MakeLine(ARRAY[6
 ST_MakePoint({left}, {bottom}, {z2}),7
 ST_MakePoint({right}, {top}, {z1})] ::geometry[])8

9
10
11
12
13
14
15

) bb_treenode16
JOIN treenode t117
 ON t1.id = bb_treenode.18

28 . 3

CLOSEST NODE IN 3DCLOSEST NODE IN 3D

Find closest node among the 100 closest edge centeroids
in order to allow 3D index use.
Assume closest node is among closest edge BB centroids (<<->> operator)

SELECT treenode.id, skeleton_id, location_x, location_y, location_z
FROM treenode
JOIN (
 SELECT id, edge
 FROM treenode_edge
 WHERE project_id = {project_id}
 ORDER BY edge <<->> ST_MakePoint({x}, {y}, {z})
 LIMIT 100
) closest_node(id, edge)
ON closest_node.id = treenode.id
ORDER BY ST_StartPoint(edge) <<->> ST_MakePoint({x}, {y}, {z})
LIMIT 1

1
2
3
4
5
6
7
8
9

10
11
12

29 . 1

CLOSEST NODE IN 3DCLOSEST NODE IN 3D

Find 100 closest (euclidean) edges

 SELECT id, edge
 FROM treenode_edge
 WHERE project_id = {project_id}
 ORDER BY edge <<->> ST_MakePoint({x}, {y}, {z})
 LIMIT 100

SELECT treenode.id, skeleton_id, location_x, location_y, location_z1
FROM treenode2
JOIN (3

4
5
6
7
8

) closest_node(id, edge)9
ON closest_node.id = treenode.id10
ORDER BY ST_StartPoint(edge) <<->> ST_MakePoint({x}, {y}, {z})11
LIMIT 112

29 . 2

CLOSEST NODE IN 3DCLOSEST NODE IN 3D

Get closest edge start node of closest edges

SELECT treenode.id, skeleton_id, location_x, location_y, location_z
FROM treenode
JOIN (

ON closest_node.id = treenode.id
ORDER BY ST_StartPoint(edge) <<->> ST_MakePoint({x}, {y}, {z})
LIMIT 1

1
2
3

 SELECT id, edge4
 FROM treenode_edge5
 WHERE project_id = {project_id}6
 ORDER BY edge <<->> ST_MakePoint({x}, {y}, {z})7
 LIMIT 1008
) closest_node(id, edge)9

10
11
12

29 . 3

MORE POSTGISMORE POSTGIS

More spatial annotations (POIs, bookmarks, text)

Storing 3D meshes as TIN data

Store spatial meta data for point clouds (BB, center of mass)

Thank you PostGIS team for making spatial data in the DB easier,
even beyond GIS!

30

ACKNOWLEDGMENTSACKNOWLEDGMENTS

CONTRIBUTORSCONTRIBUTORS

Albert Cardona
Andrew Champion
Chris Barnes
Stephan Gerhard
Davi Bock
Stephan Saalfeld
Marta Costa
Greg Jefferis
Will Patton
Philipp Schlegel
Alex Bates

DATA CREATION AND DATADATA CREATION AND DATA

WRANGLINGWRANGLING

Cardona Lab Tracers
Wellcome Trust Tracers
CAT Team @ JRC
Eric Perlman @ Yikes, LLC

LABS AND TEAMSLABS AND TEAMS

Bock Lab @ UVM
Cardona Lab @ LMB
Lippincott-Schwartz Lab @ JRC
Jekely Lab @ UEX
Lee Lab @ HMS
Funke Lab @ JRC

31

QUESTIONS?QUESTIONS?

Docker image:

catmaid.org

github.com/catmaid/catmaid

tom@kazmos.de

@tomkazimiers

docker run -p 8080:80 catmaid/catmaid

32

http://catmaid.org/
https://github.com/catmaid/catmaid

33

